Continual Learning: On Machines that can Learn Continually

Official Open-Access Course @ University of Pisa, ContinualAI, AIDA

Lecture 6: Methodologies [Part 2]

Vincenzo Lomonaco

University of Pisa & ContinualAl *vincenzo.lomonaco@unipi.it*

TABLE OF CONTENTS

Regularization Strategies

Architectural Strategies

Avalanche Implementation

Early-Stopping, L1 & L2, Dropout

Early Focus

- Study the impact of activation functions
- Study the impact of different optimizers
- L2/L1 & Dropout regularizations
- Early-Stopping, mb-size and learning rate impact

Figure 1: For the same architecture and dataset (Rotation MNIST) and only changing the training regime, the forgetting is reduced significantly at the cost of a relatively small accuracy drop on the current task. Refer to appendix C for details.

Early-Stopping, L1 & L2, Dropout

Big Brother Experiment

- 7 finalists who stayed in the house for 55 days
- Violet-Jones to detect faces
- Adjustable learning rate based on thresholds

Learning Without Forgetting (LWF)

- Straightforward application of **Knowledge Distillation**
- Originally designed for Task-Incremental settings can be easily extended to others
- Efficient single-head implementations exist
- Easy to implement and commonly used

Elastic Weights Consolidation (EWC)

- **Seminal work** that sparked new excitement and interest in *Deep Continual Learning*
- Interesting connection with more advanced computational neuroscience memory consolidation theories
- Many variations are possible: how to compute parameters importance? Do we need to maintain a separate set of <optima weights, importance values> for each experience?

$$\mathcal{L}(\theta) = \mathcal{L}_B(\theta) + \sum_{i} \frac{\lambda}{2} F_i (\theta_i - \theta_{A,i}^*)^2$$

Synaptic Intelligence (SI)

- A simple yet effective way of computing weights importances
- Main idea: "a parameter importance is proportional to its contribution to the loss decrease over time"
- Even in this case efficient online implementation exists
- Hyper-parameters may be difficult to calibrate

$$L(\boldsymbol{\theta}(t) + \boldsymbol{\delta}(t)) - L(\boldsymbol{\theta}(t)) \approx \sum_{k} g_{k}(t)\delta_{k}(t)$$
, (1)

$$\int_{C} \mathbf{g}(\boldsymbol{\theta}(t)) d\boldsymbol{\theta} = \int_{t_0}^{t_1} \mathbf{g}(\boldsymbol{\theta}(t)) \cdot \boldsymbol{\theta}'(t) dt.$$
 (2)

$$\int_{t^{\mu-1}}^{t^{\mu}} \mathbf{g}(\boldsymbol{\theta}(t)) \cdot \boldsymbol{\theta}'(t) dt = \sum_{k} \int_{t^{\mu-1}}^{t^{\mu}} g_{k}(\boldsymbol{\theta}(t)) \theta_{k}'(t) dt$$
$$\equiv -\sum_{k} \omega_{k}^{\mu}. \tag{3}$$

$$\tilde{L}_{\mu} = L_{\mu} + c \sum_{k} \Omega_{k}^{\mu} \left(\tilde{\theta}_{k} - \theta_{k} \right)^{2}$$
surrogate loss
(4)

$$\Omega_k^{\mu} = \sum_{\nu < \mu} \frac{\omega_k^{\nu}}{(\Delta_k^{\nu})^2 + \xi} \quad . \tag{5}$$

CL with Hypernetworks

- Main idea: let's learn how to generate network weights
- It may be seen as a form of neurogenesis regulation
- Underlying hypothesis: learning in this "compressed" space is less subject to forgetting
- Difficult to scale on higher-dimensional problems and without tasks labels

Figure 1: **Task-conditioned hypernetworks for continual learning.** (a) Commonly, the parameters of a neural network are directly adjusted from data to solve a task. Here, a weight generator termed *hypernetwork* is learned instead. Hypernetworks map embedding vectors to weights, which parameterize a target neural network. In a continual learning scenario, a set of task-specific embeddings is learned via backpropagation. Embedding vectors provide task-dependent context and bias the hypernetwork to particular solutions. (b) A smaller, chunked hypernetwork can be used iteratively, producing a chunk of target network weights at a time (e.g., one layer at a time). Chunked hypernetworks can achieve model compression: the effective number of trainable parameters can be smaller than the number of target network weights.

Summary & Next Steps

- Quite elegant formulation (mostly changing the loss function, adding regularization terms)
- Towards a more principled definition of continual optimization
- Especially effective in Domain-Incremental scenarios
- Better investigation in the gradient dynamics while learning may be useful
- Plug & play orthogonal regularization terms may be interesting to study
- We expect **significant advances** in this area in the years to come

Multi-Head Architectures

Key Elements

- Great to specialize behaviours if the notion of task is explicit
- It clearly separate shared parameters with private parameters
- It may be constructed "internally" by the model when a significant "shift" is detected
- A new head for each experience: quite inefficient and possibly ineffective

Copy Weights with Re-Init (CWR)

Key Aspects

- Developed for the fully connected linear classifier (may be extended to multiple layers)
- Dual memory system approach: one for better plasticity, one for memory consolidation
- Very simple and efficient, yet effective solution agnostic to the experience content (NI, NC, NIC) and specific scenario

Algorithm 1 CWR* pseudocode: $\bar{\Theta}$ are the class-shared parameters of the representation layers; the notation cw[j]/tw[j] is used to denote the groups of consolidated / temporary weights corresponding to class j. Note that this version continues to work under NC, which is seen here a special case of NIC; in fact, since in NC the classes in the current batch were never encountered before, the step at line 7 loads 0 values for classes in B_i because cw_j were initialized to 0 and in the consolidation step (line 13) $wpast_j$ values are always 0.

```
procedure CWR*
         cw = 0
         past = 0
 4:
         init \bar{\Theta} random or from pre-trained model (e.g. on ImageNet)
 5:
         for each training batch B_i:
            expand output layer with neurons for the new classes in B_i
            never seen before
                        cw[j],
                                  if class j in B_i
            train the model with SGD on the s_i classes of B_i:
              if B_i = B_1 learn both \bar{\Theta} and tw
10:
              else learn tw while keeping \bar{\Theta} fixed
11.
            for each class j in B_i:
              wpast_j = \sqrt{rac{past_j}{cur_j}}, where cur_j is the number of patterns
12:
              of class j in B_i
              cw[j] = \frac{cw[j] \cdot wpast_j + (tw[j] - avg(tw))}{wpast_i + 1}
13:
14:
              past_i = past_i + cur_i
            test the model by using \bar{\Theta} and cw
15:
```

Progressive Neural Networks (PNNs)

- Main focus on forward transfer and re-use of previously acquired representational power
- Previous "columns" are frozen inhibiting backward knowledge transfer
- Quite inefficient: significant grow in the parameter space, very difficult to scale on longer sequences of experiences
- Adapters + pruning can be used to tame complexity

Weights Mask (Piggyback)

- Starting from a pre-trained model (backbone)
- Adding a mask for each weight, train float then binarize
- This achieves zero-forgetting, but no knowledge transfer
- It is quite efficient, and handful of KBs per experience / task, but it needs task labels

Hard Attention to the Task (HAT)

- Similar idea as Piggyback: use hard attention masks for each task
- The mask is on the neurons not weights (as "inhibitory synapses"), gradients masks can be created based on them
- Some form of forward transfer exist in the concept of "cumulative attention" and no pre-train model is necessary
- Good accuracy-effectiveness trade-off (binary vs real attention masks)
- Subject to the same limitations as Piggyback as for the task labels availability

Figure 1. Schematic diagram of the proposed approach: forward (top) and backward (bottom) passes.

Supermasks in Superimposition

- Good binary masks that applied to random weights exist
- Random weights can be generated on the fly based on random seed
- They can be used in superimposition

Figure 1: (**left**) During training SupSup learns a separate supermask (subnetwork) for each task. (**right**) At inference time, SupSup can infer task identity by superimposing all supermasks, each weighted by an α_i , and using gradients to maximize confidence.

Summary & Next Steps

- Architectural methods may be quite effective in terms of performance metrics and reducing forgetting (knowledge preserving)
- Difficult to perform efficient knowledge transfer and parameter sharing
- Often involve constant growing in the parameter space
- The often leverage task-specific supervised signals
- Interesting link with **structural plasticity** in biological learning systems
- More flexible and dynamic architecture re-arrangements based on available resources may be an interesting future research direction

Avalanche EWC, LWF & CWR Implementation

Demo Session!

Your Turn: Regularization Strategies in Class-Incremental Scenarios

Hands-on Session!

vincenzo.lomonaco@unipi.it vincenzolomonaco.com University of Pisa

THANKS

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik