I ' :

u
N :
Continual Learning: On Machines ©
that can Learn Contin uall*

fficial Open-Access Course @ University of Pisa, ContinuatAI, AIDA

Lecture 6: Methodologie: [Part 2]
- : Vincenzo Lomonaco -)

University of Pisa & ContinualAl

vincenzo.lomonaco@unipi.it
u O -
O : -

TABLE OF CONTENTS

a8 &
01 b02 Lop3

Reqularization Architectural Avalanche
Strategies Strategies Implementation

]

Regularization
Strategies

Early-Stopping, L1 & L2, Dropout s

Optimal model sizes for similar tasks

Early Focus

>
. - - o -
e Study the impact of activation EasiEN
- (8] 2 TR et EoT—— R
O Y dropout=0.5 dropout=0.0
functions < o |Be=16 bs=256
waxout Ir=0.25 Ir=0.05
. . Irrdecay:0.4 I(_decayzl
[} St U d y th elm p a Ct Of d |ffe re nt Figure 2. Optimal model size with and without dropout on 35 hiddens=100 hiddens=100
0 o the input reformatting tasks. 1 2 3 4
optimizers Tasks Learned

Figure 1: For the same architecture
and dataset (Rotation MNIST) and only
changing the training regime, the forget-
° , and ting is reduced significantly at the cost

impact o e S of a relatively small accuracy drop on

the current task. Refer to appendix C for
Figure 4. Optimal model size with and without dropout on <
the similar tasks experiment. detalls'

e L2/L1 & Dropout regularizations

]

| An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks, Goodfellow et al, 2015.
Understanding the Role of Training Regimes in Continual Learning, Mirzadeh et al. 2020.

https://arxiv.org/abs/1312.6211
https://arxiv.org/pdf/2006.06958.pdf

Early-Stopping, L1 & L2, Dropout] H

Big Brother Experiment

77,00%
o 7 finalists who stayed in the -
house for 73.00%
71,00%
e Violet-Jones to detect faces 69.00% [\
67.00% ==
e Adjustable learning rate 65.00% KH\,//_\/M
based on thresholds N

61,00%

-~ CaffeNet + FT (adjustable Ir)
59,00% ~o~ CaffeNet + FT (low ir)
CaffeNet + FT (high Ir)

57,00%

AEEAAEE

5,00%
Fig.2. N B b Ao W R R PP

Example images of the seven subjects contained in the SETB of the BigBrother Dataset.

]

Comparing Incremental Learning Strategies for Convolutional Neural Networks, Lomonaco et al, ANNPR 2016.

https://link.springer.com/chapter/10.1007/978-3-319-46182-3_15

Learning Without Forgetting (LWF)

Key Aspects

e Straightforward application of
Knowledge Distillation

e Originally designed for
Task-Incremental settings can be
easily extended to others

o Efficient single-head
implementations exist

e Easy to implement and commonly
used

Learning without Forgetting, Li et al, TPAMI 2017
Distilling the knowledge in a neural network, Hinton et al, 2015.

(a) Original Model

1 J = (old task 1)
(test imugc)ﬁ **; l -~ <,
[

™ (old task m)
78 S

(b) Fine-tuning

Target:

new task
ground truth

(d) Joint Training

image for .L - -L
each task | > 4

Target:

old tasks’
* ground truth

new task
ground truth

(c) Feature Extraction

Input: }' Target:

e [L

image
new task
ground truth

(e) Learning without Forgetting
model (a)’s

response for

new task old tasks

image |
new task
ground truth

Fig. 2. lllustration for our method (e) and methods we compare to (b-d). Images and labels used in training are shown. Data for different tasks are

used in alternation in joint training.

Continuous Learning in Single-Incremental Tasks, Maltoni & Lomonaco, Neural Networks, 2019.

https://arxiv.org/pdf/1606.09282.pdf
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531

Elastic Weights Consolidation (EWC) o

Key Aspects
) Low error for task B == EwC
. . - L
e Seminal work that sparked new excitement = Low error for task A ™ ng penalty
and interest in Deep Continual Learning ‘

e Interesting connection with more advanced
computational neuroscience memory
consolidation theories

e Many variations are possible: how to
compute parameters importance? Do we
need to maintain a separate set of <optima
weights, importance values> for each
experience?

Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017.

https://arxiv.org/pdf/1612.00796.pdf

]
O

Synaptic Intelligence (SI)

Key Aspects

e A simple yet effective way of computing
weights importances

e Main idea: “a parameter importance is
proportional to its contribution to the loss
decrease over time”

e Even in this case efficient online
implementation exists

e Hyper-parameters may be

Continual Learning Through Synaptic Intelligence, Zenke et al, 2017.
Continuous Learning in Single-Incremental Tasks, Maltoni & Lomonaco, Neural Networks, 2019.

surrogate loss

https://arxiv.org/pdf/1703.04200.pdf
https://arxiv.org/abs/1503.02531

CL with Hypernetworks

Key Aspects

e Main idea: let’s learn how to
generate network weights network
(_)u.l} (.;.)(l,ll ()

o It may be seen as a form of reqularized
hypernetwork

¢ c®@ c? e
. Underlying hypothesis: chunked hypernetwork

learning in this “compressed”

Figure 1: Task-conditioned hypernetworks for continual learning. (a) Commonly, the parame-

space is less subject to ters of a neural network are directly adjusted from data to solve a task. Here, a weight generator
forgetting termed hypernetwork is learned instead. Hypernetworks map embedding vectors to weights, which
parameterize a target neural network. In a continual learning scenario, a set of task-specific em-

o F beddings is learned via backpropagation. Embedding vectors provide task-dependent context and

° Difficult to scale on bias the hypernetwork to particular solutions. (b) A smaller, chunked hypernetwork can be used
higher-dimensional problerns iteratively, producing a chunk of target network weights at a time (e.g., one layer at a time). Chunked

hypernetworks can achieve model compression: the effective number of trainable parameters can be

and without tasks labels] :
smaller than the number of target network weights.

Continual learning with hypernetworks, Von Osvald et al, ICLR 2020.

https://arxiv.org/abs/1906.00695

Summary @ Next Steps B

e Quite elegant formulation (mostly changing the loss function, adding reqularization terms)
e Towards a more principled definition of continual optimization

e Especially effective in Domain-Incremental scenarios

e Better investigation in the gradient dynamics while learning may be useful

e Plug & play orthogonal regularization terms may be interesting to study

e We expect significant advances in this area in the years to come

]

Architectural
Strategies

Multi-Head Architectures

Key Elements

Great to

e It clearly separate shared parameters with
private parameters

e It may be constructed “internally” by the model
when a significant “shift” is detected

e A new head for each experience: quite
inefficient and possibly ineffective

Overcoming catastrophic forgetting in neural networks, Kirkpatrick et al, PNAS 2017.

Shared
Layers

Task-specific
Layers

[P D Task 1
L]

e

https://arxiv.org/pdf/1612.00796.pdf

]

Copy Weights with Re-Init (CWR)

Algorithm 1 CWR* pseudocode: © are the class-shared parame-

ters of the representation layers; the notation cw/[j] / tw|[j] is used

to denote the groups of consolidated / temporary weights corre-

sponding to class j. Note that this version continues to work under

NC, which is seen here a special case of NIC; in fact, since in NC

Key As pect S the classes in the current batch were never encountered before, the

step at line 7 loads 0 values for classes in B; because were ini-

: procedure CWR* tialized to 0 and in the consolidation step (line 13) wpast; values
are always 0.

e Developed for the fully connected linear

classifier (may be extended to multi ple 4: init © random or from pre-trained model (e.g. on ImageNet)
| for each training batch B;:
ayerS) : expand output layer with neurons for the new classes in B;

never seen before
cw(j], ifclassjin B;

< s one for ; twli] = 0, otherwise
better plastiCity, one for memory ¢ train the model with SGD on the s; classes of B;:
. . g if B; = Bj learn both © and tw
consol Idatlon ; else learn tw while keeping © fixed

for each class j in B;:
e Very simple and efficient, yet effective : past; F where cur; is the number of patterns
solution agnostic to the experience content _ g ST
(NI, NC, NIC) and specific scenario T weesgytr

test the model by using © and cw

Rehearsal-Free Continual Learning over Small Non-I.I.D. Batches. Lomonaco et al, CLVision Workshop at CVPR 2020.

https://arxiv.org/pdf/1907.03799.pdf

Progressive Neural Networks (PNNs)

h) = f (wg("')hﬁk’l + > UFI,
i<k

Key Aspects

e Main focus on forward transfer and
re-use of previously acquired
representational power

o inhibiting
backward knowledge transfer
e Quite inefficient: significant grow in the

parameter space, very difficult to scale
on longer sequences of experiences

e Adapters + pruning can be used to tame
complexity

input

]
O

Progressive Neural Networks, Rusu et al. 2016.

https://arxiv.org/abs/1606.04671

Weights Mask (Piggyback)

Key Aspects

e Starting from a pre-trained model
(backbone)

e Adding a mask for each weight, | Dense fiter (W) of pre- Binary mask (m)
a . . ! trained backbone network for
train float then binarize '
© Elementwise Masking
e This achieves zero-forgetting, but
no knowledge transfer 00O

e Itis quite efficient, and
, but it ‘ s |
needs task labels § uvsaeha'v?:-i

Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights, Mallya et al. 2018.
PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning, Mallya et al 2017.

Thresholding Function

e.g. Binarizer

, ifx>T1
¥= ;
0, otherwise

Real-valued mask
weights (m ")
for

https://arxiv.org/abs/1801.06519
https://arxiv.org/abs/1711.05769

Hard Attention to the Task (HAT)

Key Aspects

e Similar idea as Piggyback: use hard attention
masks for each task

e The mask is on the neurons not weights (as
“inhibitory synapses”), gradients masks can
be created based on them

e Some form of forward transfer exist in the
concept of * “and no
pre-train model is necessary

e Good accuracy-effectiveness trade-off
(binary vs real attention masks)

e Subject to the same limitations as Piggyback
as for the task labels availability

Figure 1. Schematic diagram of the proposed approach: forward
(top) and backward (bottom) passes.

]
O

Overcoming catastrophic forgetting with hard attention to the task, Serra et al. 2018.

https://arxiv.org/abs/1801.01423

Supermasks In Superimposition -

Key As pects Training: Supermasks Inference: Supermasks in Superposition

- Supermask 1 Supermask 2 Supermask 3
° Gooq binary masks that a o o O 000
applied to random ‘
weights exist

e Random weights can | {/
be generated on the fly ’ oo iRe o)
a, a, as 3 10, 3 3 1t 3
based on random Seed i Data from Maximize Converge to

unknown task confidence supermask 2

e They can be used in Figure 1: (left) During training SupSup learns a separate supermask (subnetwork) for each task.
(right) At inference time, SupSup can infer task identity by superimposing all supermasks, each
weighted by an «;, and using gradients to maximize confidence.

]
O

Supermasks in Superposition, Wortsman et al. 2020.

https://arxiv.org/pdf/2006.14769.pdf

Summary @ Next Steps B

e Architectural methods may be quite effective in terms of performance metrics and reducing
forgetting (knowledge preserving)

o Difficult to perform efficient knowledge transfer and parameter sharing
e Often involve constant growing in the parameter space

e The often leverage task-specific supervised signals

e Interesting link with structural plasticity in biological learning systems

e More flexible and dynamic architecture re-arrangements based on available resources may be an
interesting future research direction

Avalanche
- Implementation

.'

O

Avalanche EWC, LWF & CWR Implementation

O Search or jump to. Pull requests Issues Marketplace Explore

& ContinualAl / avalanche Public Q sponsor ®Unwatch ~ 27 W Unstar

<> Code (@ lIssues 57 1% Pull requests 5 LY Discussions Actions [Projects 0 wiki Security |22 Insights 3 Settings

Go to file

O History

Bame @ @ 2 O

from avalan
lanche. training.str
lanche. mod impl
lanche. evaluation.metric t forgetting met

sracy_metrics, lo metrics

lanche.logging import InteractiveLogger, TensorboardLo

anche. training.plugins imp nelugin

This example tests EWC on Split MNIST and Permuted MNIST.
ibl , among other opti e EWC with

and online EWC wi ingle penalty.

]
O

https://github.com/ContinualAl/avalanche

https://github.com/ContinualAI/avalanche

Your Turn: Regularization Strategies in -
Class-Incremental Scenarios

O Search or jump to. Pull requests Issues Marketplace Explore

& ContinualAl / avalanche Public Q sponsor ®Unwatch ~ 27 W Unstar

<> Code (@ lIssues 57 1% Pull requests 5 LY Discussions ® Actions [Projects 0 wiki © Security |22 Insights 3 Settings

¥ master v avalanche / examples / ewc_mnist.py /<> Jump Go to file

i AndreaCossu A t commit d O History

A contributors @)) @

110 lines (96 sloc) 4.96 KB

Raw Blame & & 2 T

import torch

or
from avalanche.benchmar rmutedMNIST, nc_benchmark
m avalanche.training.strategi.

lanche.models imp

lanche.evaluation.metric t forgetting metrics, \

loss_metrics, bwt_metrics
logging import InteractiveLogger

, TensorboardLogger

raining.plugins import EvaluationPlugin

This example tests EWC on Split MNIST and Permuted MNIST.

ble , between EWC with

https://github.com/ContinualAl/avalanche

https://github.com/ContinualAI/avalanche

Next:
Methodologles [Part 3]

Appllcatlons a Tools

Do you have any questions?

vincenzo.lomonaco@unipi.it
vincenzolomonaco.com
University of Pisa]

THANKS
w g

CREDITS: This presentation template was created by Slidesgo,
including icons by Flaticon, and infographics & images by Freepik

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://www.vincenzolomonaco.com/

