Continual Learning: On Machines that can Learn Continually

Official Open-Access Course @ University of Pisa, ContinualAI, AIDA

Lecture 4: Evaluation & Metrics

Vincenzo Lomonaco

University of Pisa & ContinualAl *vincenzo.lomonaco@unipi.it*

TABLE OF CONTENTS

Evaluation Protocol

Continual Learning Metrics

Avalanche Metrics & Loggers

Classic ML Evaluation

Train - Validation - Test split

- Model selection: train on training set, eval on validation set
- Model assessment: train on training (+ validation) set, eval on test set

Variations allowed

- K-fold Cross-Validation
- Leave-one-out
- ...

Test, training and validation sets (brainstobytes.com)

Basic CL Evaluation Protocol

Different Data

- Classic Machine Learning -> static dataset
- Continual Learning -> stream of datasets (experiences)

A Simple Extension to CL

- Split by patterns: one train-(validation)-test per experience (or parallel streams of experiences)
- This is the simplest and most common evaluation protocol

The objective of a CL algorithm is to minimize the loss \mathcal{L}_S over the entire stream of data S:

$$\mathcal{L}_S(f_n^{CL}, n) = \frac{1}{\sum_{i=1}^n |\mathcal{D}_{test}^i|} \sum_{i=1}^n \mathcal{L}_{exp}(f_n^{CL}, \mathcal{D}_{test}^i)$$
 (2)

$$\mathcal{L}_{exp}(f_n^{CL}, \mathcal{D}_{test}^i) = \sum_{j=1}^{|\mathcal{D}_{test}^i|} \mathcal{L}(f_n^{CL}(\boldsymbol{x}_j^i), y_j^i), \quad (3)$$

where the loss $\mathcal{L}(f_n^{CL}(x), y)$ is computed on a single sample $\langle x, y \rangle$, such as cross-entropy in classification problems.

Split by Patterns

- Training phase: train the model on training sets of each experience, sequentially
- **Test phase**: evaluate the model on **the sets** of the experiences (order does not matter)
- Examples in the training and test sets **are disjoint!**
- We may have a single test set or one for each experience
- Multiple evaluation streams are possible (Valid, Test, Out-of-Distribution, etc.)
- **Cross-Validation** & **Hyper-parameters** selection can be operated based on the final aggregate metric at the end of the training.

When and What to Test On

When to test?

- At the end of each experience, usually.
- A finer granularity is always possible (*epochs*, *iterations*, etc.)

On what to test?

- Current experience
- **Future** experiences
- Past experiences
- All experiences
- ...

...depending also on the metrics you want to use!

Growing vs Fixed Test Set

Growing Test Set

- We consider only the test set of the current and previously encountered experiences
- Compute the performance metrics average over those

Fixed test set

- Common for some benchmarks
- Clear view on overall system performance
- Recover experience-wise performance, if needed

Figure 8: Accuracy on iCIFAR-100 with 10 batches (10 classes per batch). Results are averaged on 10 runs: for all the strategies hyperparameters have been tuned on run 1 and kept fixed in the other runs. The experiment on the right, consistently with CORe50 test protocol, considers a fixed test set including all the 100 classes, while on the left we include in the test set only the classes encountered so far (analogously to results reported in [28]). Colored areas represent the standard deviation of each curve. Better viewed in color.

Is it Enough for CL?

- Split by patterns: one train-validation-test per experience (or parallel streams of experiences)
- But is it enough for Continual Learning? -> we would like
 a way to evaluate if we are actually able to learn
 continually!
- Split by experiences: model selection on a first set of experiences, model assessment on a second set of experiences
- Model assessment should also involve training.

Hyper-parameters Selection for CL

- We mentioned Hyper-parameters selection can be operated based on the final aggregate metric at the end of the training
- But this may be seen as a form of cheating: we select the best hyperparameters that maximize the the
 performance on a specific sequence of training experiences
- We may partially solve this with several runs with a random order of the training experiences.
- This may be still **unfair**: we should calibrate hyper-parameters on a **limited set of experiences**

A more Articulated Protocol: An Example

- Model selection: train the model on a first split of experiences, select best hyperparameters with a cross-validation scheme.
- Model assessment: train & evaluate the CL algorithm on a second split of experiences

Algorithm 1 Learning and Evaluation Protocols

```
1: for h in hyper-parameter list do
2: for k = 1 to T^{CV} do
                                                                  \triangleright Cross-validation loop, executing multiple passes over \mathcal{D}^{CV}
                                                                                                  \triangleright Learn over data stream \mathcal{D}^{CV} using h
               for i = 1 to n_k do
                                                                                                                         \triangleright Single pass over \mathcal{D}_k
                     Update f_{\theta} using (\mathbf{x}_{i}^{k}, t_{i}^{k}, y_{i}^{k}) and hyper-parameter h
                    Update metrics on test set of \mathcal{D}^{CV}
               end for
          end for
 8: end for
 9: Select best hyper-parameter setting, h^*, based on average accuracy of test set of \mathcal{D}^{CV}, see Eq. 1.
10: Reset f_{\theta}.
11: Reset all metrics.
12: for k = T^{CV} + 1 to T do
                                                                                                \triangleright Actual learning over datastream \mathcal{D}^{EV}
          for i = 1 to n_k do
                                                                                                                         \triangleright Single pass over \mathcal{D}_k
                Update f_{\theta} using (\mathbf{x}_{i}^{k}, t_{i}^{k}, y_{i}^{k}) and hyper-parameter h^{*}
14:
               Update metrics on test set of \mathcal{D}^{EV}
          end for
17: end for
18: Report metrics on test set of \mathcal{D}^{EV}.
```


What to Monitor?

- Performance on current experience
- Performance on past experiences
- Performance on future experiences
- Resource consumption
 (Memory / CPU / GPU / Disk usage)
- Model size growth
 (with respect to the first model)
- Execution time
- Data efficiency
- ...

Accuracy

Q: How accurate is my model?

In many different sauces

- Accuracy on the current experience
- Accuracy on previous experiences (plus the current one)
- Accuracy on future experiences (plus the current one)

ACC Metric

 After training on all experiences, average accuracy over all the test experiences.

A Metric

 Average of the accuracy on all experiences at any point in time.

R	Te_1	Te_2	Te_3
Tr_1	$R_{1,1}$	$R_{1,2}$	$R_{1,3}$
Tr_2	$R_{2,1}$	$R_{2,2}$	$R_{2,3}$
Tr_3	$R_{3,1}$	$R_{3,2}$	$R_{3,3}$

Average Accuracy: ACC =
$$\frac{1}{T} \sum_{i=1}^{T} R_{T,i}$$

$$A = \frac{\sum_{i=1}^{N} \sum_{j=1}^{i} R_{i,j}}{\frac{N(N+1)}{2}}$$

Forward Transfer

Q: How much learning the current experience improves my performance on future experiences?

FWT Metric

- Accuracy on experience i after training on last experience Minus
- Accuracy on experience *i* before training on the first experience (model init)
- Averaged over *i=2,...,T*

$$\begin{array}{c|ccccc} R & Te_1 & Te_2 & Te_3 \\ \hline Tr_1 & R_{1,1} & R_{1,2} & R_{1,3} \\ Tr_2 & R_{2,1} & R_{2,2} & R_{2,3} \\ Tr_3 & R_{3,1} & R_{3,2} & R_{3,3} \\ \hline \end{array}$$

FWT =
$$\frac{1}{T-1} \sum_{i=2}^{T} R_{i-1,i} - \bar{b}_i$$
.

Backward Transfer

Q: How much learning the current experience improves my performance on previous experiences?

BWT Metric

- Accuracy on experience i after training on experience T Minus
- Accuracy on experience i after training on experience i
- Averaged over i=1,...,T-1

FORGETTING = - BWT

$$\begin{array}{c|ccccc} R & Te_1 & Te_2 & Te_3 \\ \hline Tr_1 & R_{1,1} & R_{1,2} & R_{1,3} \\ Tr_2 & R_{2,1} & R_{2,2} & R_{2,3} \\ Tr_3 & R_{3,1} & R_{3,2} & R_{3,3} \\ \hline \end{array}$$

BWT =
$$\frac{1}{T-1} \sum_{i=1}^{T-1} R_{T,i} - R_{i,i}$$

Memory

Not only performance

- How much space does your model occupy? (MB, # of params, etc.)
- What is the increment in space required for each new experience?
- How much space do you require for additional information (replay buffer, past models...)?

$$MS = min(1, \frac{\sum_{i=1}^{N} \frac{Mem(\theta_1)}{Mem(\theta_i)}}{N})$$

$$SSS = 1 - min(1, \frac{\sum_{i=1}^{N} \frac{Mem(M_i)}{Mem(D)}}{N})$$

Computation

Not only performance

- What is the computational overhead during training? (# MACs, Running Time, GPU/CPU time, ...)
- What about its **increment over time**?
- What is the computational overhead during inference?

$$CE = min(1, \frac{\sum_{i=1}^{N} \frac{Ops \uparrow \downarrow (Tr_i) \cdot \varepsilon}{1 + Ops(Tr_i)}}{N})$$

Don't Forget: There is More than Forgetting!

- Accuracy vs offline baseline
- Model Robustness
- Model Plasticity & Capacity
- ...

More complex Score Functions

- Additional, more informative derived metrics can be devised as well.
- They can be tuned depending on the specific application goals.

$$CL_{score} = \sum_{i=1}^{\#\mathcal{C}} w_i c_i$$

$$CL_{stability} = 1 - \sum_{i=1}^{\#C} w_i stddev(c_i)$$

Table 1: CL metrics and CL_{score} for each CL strategy evaluated (higher is better).									
Strategy A		REM	BWT^{+}	FWT	MS	SSS	CE	CL_{score}	$CL_{stability}$
Naïve 0.3	3825	0.6664	0.0000	0.1000	1.0000	1.0000	0.4492	0.5140	0.9986
Cumul. 0.7	7225	1.0000	0.0673	0.1000	1.0000	0.5500	0.1496	0.5128	0.9979
EWC 0.5	5940	0.9821	0.0000	0.1000	0.4000	1.0000	0.3495	0.4894	0.9972
LWF 0.5	5278	0.9667	0.0000	0.1000	1.0000	1.0000	0.4429	0.5768	0.9986
SI 0.5	5795	0.9620	0.0000	0.1000	0.4000	1.0000	0.3613	0.4861	0.9970

Summing Up

- Choose an evaluation protocol and declare it (no standard, yet)
- Choose the metrics you monitor wisely (what are you interested in?)
- Do not focus exclusively on performance metrics, if possible

Q: you can achieve low/zero forgetting by occupying a lot of space. How?

Q: which metrics would you monitor to evaluate a continual learner deployed and trained on the edge on image classification tasks?

Recall lecture 1: there are various

machine learning formulations that have continuous components

(a small snapshot from the overall paradigm relationships)

Existence of various scenarios is not a problem, but actually meaningful because different applications can desire different things!

But **reproducibility & comparability can be problematic**, which is a constant subject in the scientific literature.

Recently, the **CLEVA-Compass** has been introduced to **promote transparency & comparability**

Inner compass level (star plot):

indicates related paradigm inspiration & continual setting configuration (assumptions)

Inner compass level (star plot):

indicates related paradigm inspiration & continual setting configuration (assumptions)

Inner compass level of supervision:

"rings" on the star plot indicate presence of supervision. Importantly: supervision is individual to each dimension!

Inner compass level (star plot):

indicates related paradigm inspiration & continual setting configuration (assumptions)

Inner compass level of supervision:

"rings" on the star plot indicate presence of supervision. Importantly: supervision is individual to each dimension!

Outer compass level:

Contains a comprehensive set of practically reported measures

How to Monitor Experiments?

Evaluation module provides

- Metrics (accuracy, forgetting, CPU Usage...) you can create your own!
- Loggers to report results in different ways you can create your own!
- Automatic integration in the training and evaluation loop through the Evaluation Plugin
- A dictionary with all recorded metrics always available for custom use

Let's Track our Experiments

```
from avalanche.logging import InteractiveLogger, TextLogger, \
    TensorboardLogger
from avalanche.training.plugins import EvaluationPlugin
from avalanche.evaluation.metrics import ExperienceForgetting, \
   accuracy metrics, loss metrics, cpu usage metrics
eval plugin = EvaluationPlugin(
  accuracy_metrics(minibatch=True, stream=True),
  loss_metrics(epoch=True, experience=True),
  ExperienceForgetting(),
  cpu usage metrics(stream=True),
  loggers=[TextLogger(open('out.txt', 'w')),
           InteractiveLogger(),
           TensorboardLogger()])
metric_dict = eval_plugin.get_all_metrics()
```

Interactive Logger Output

```
-- >> Start of training phase << --
-- Starting training on experience 0 (Task 0) from train stream --
Epoch 0 ended.

Loss_Epoch/train_phase/train_stream/Task000 = 1.1099

Top1_Acc_Epoch/train_phase/train_stream/Task000 = 0.8926
...
-- >> End of training phase << --
-- >> Start of eval phase << --
-- Starting eval on experience 0 (Task 0) from test stream --
> Eval on experience 0 (Task 0) from test stream ended.

Loss_Exp/eval_phase/test_stream/Task000/Exp000 = 0.0208

Top1_Acc_Exp/eval_phase/ test_stream/Task000/Exp000 = 0.9981
...
-- >> End of eval phase << --
Loss_Stream/eval_phase/test_stream = 4.4492
```

Tensorboard Logger in Action

Standalone Metrics

```
import torch
from avalanche.evaluation.metrics import Accuracy
acc metric = Accuracy()
print("Initial Accuracy: ", acc_metric.result()) # output 0
real y = torch.tensor([1, 2]).long()
predicted_y = torch.tensor([1, 0]).float()
acc metric.update(real y, predicted y)
acc = acc metric.result()
print("Average Accuracy: ", acc) # output 0.5
predicted_y = torch.tensor([1,2]).float()
acc metric.update(real y, predicted y)
acc = acc_metric.result()
print("Average Accuracy: ", acc) # output 0.75
acc_metric.reset()
print("After reset: ", acc_metric.result()) # output 0
```

What's Next?

- Evaluation of a CL algorithm is not only about metrics and loggers.
- More support for the definition of training and evaluation protocols
 - How to perform **cross validation** in CL?
 - How to evaluate multiple runs?
- The objective of a **shared protocol** is possible only with the help of the community

Avalanche Evaluation Module

Demo Session!

vincenzo.lomonaco@unipi.it vincenzolomonaco.com University of Pisa

THANKS

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik