I ' :

u
N :
Continual Learning: On Machines ©
that can Learn Contin uall*

fficial Open-Access Course @ University of Pisa, ContinuatAI, AIDA

Lecture 5: Methodologie: [Part 1]
- : Vincenzo Lomonaco -)

University of Pisa & ContinualAl

vincenzo.lomonaco@unipi.it
u O -
O : -

TABLE OF CONTENTS

L
-01

Strategies
Categorization
and History

L1

-02

Replay
Strategies:
Intro & Main
Approaches

-03

Avalanche
Strategies &
Plugins

. (ategorization and

.'

Strategy

History

]

Possible 4-way Fuzzy Categorization

With some twists Rehearsal Generative Replay
— ——— s e
Pure 22 A
A) . ® GR e
° NO fOl’I‘nal def'n'tlon [Rehearsa]/// °® MERGAN
_ O Exstream ® FearNet
. are possible © ICAR

® G!;SM

Continual Learning Methods

N

Replay Regularization-based Parameter isolation
methods methods methods

/\

Rehearsal Pseudo Constrained Prior-focused Data-focused Fixed Dynamic
!
‘ Rehearsal | | | Network Architectures

iCaRL [16] \ GEM[55] EWC [27] LwF [58] | |
ER [49] DGR[12] A-GEM[6] IMM [28] LFL[59] PackNet [61] PNN [64]
SER [50] PR [52] GSS [48] SI [56] EBLL[9] PathNet [30] Expert Gate [5]
TEM [51] CCLUGM [53] R-EWC[57] DMCI[60] Piggyback[62] RCL [65]
CoPE [33] LGM [54] MAS [13] HAT [63] DAN [17]
Riemannian
Walk [14]

Regularization ~ Architectural

Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges, Lesort et al. Information Fusion, 2020.
A continual learning survey: Defying forgetting in classification tasks. De Lange et al, TPAMI 2021.

https://arxiv.org/abs/1907.00182%C3%B9
https://ieeexplore.ieee.org/document/9349197

Continual Learning Baselines

Common Baselines / Control Algorithms

e Naive / Finetuning (just continuing backprop)

e JointTraining / Offline (pure Multi-task
learning): The best you can do with all the data
starting from scratch

e Ensemble: one model for each experience

° : for every experience, accumulate
all data and re-train from scratch.

A brief review on multi-task learning. Thung et al, 2018.

Shared
Layers

Task-specific
Layers

ﬂ.ﬂﬂ Task 1

D*DD Task2
] e

https://link.springer.com/article/10.1007/s11042-018-6463-x

Fundamental Design Choices -

Strategic Choices

e Start from scratch or pre-trained? - - -
[Head 1] [Head ZJ tHead 3} Single Head

|

e \What to use? #7- 'é‘*' é'—‘ ’ I

e Such choices may affect the CL approach
effectiveness

[MODEL

N

Multi-Head vs Single-Head

Continual Learning for Recurrent Neural Networks: an Empirical Evaluation. Cossu et al, 2021.

https://arxiv.org/abs/2103.07492

Historical Trends -

e Initial focus on Task Incremental (a few experiences, one for task, task labels given)

o Simple Regularization methods (L1/ L2, Dropout, Elastic Weights Consolidation, Synaptic Intelligence,
etc.)

o Simple Architectural strategies (Multi-head, Copy-Weight with Reinit, Progressive Neural Networks,
etc.)

e Simple Replay Strategies (random Replay, multi-buffer random replay, etc.)

e Current trend: more and more articulate strategies (often starting from pre-trained models), mostly
hybrid

e Mostly Heuristics, not principled methods. Very difficult to generalize to a large set of scenarios

Effective Solutions O

Good News

e Replay is a very general and

effective strategy for CL o .
? GSS
Bad News
. . === Replay
[] Replay K === Gdumb
== [Carl
« Can be seen as a form of m— W R o ’ . %0
cheating
° Compute / memory Figure 5.2: Split-MNIST memory-accuracy Figure 5.3: Split-CIFAR-10 memory-accuracy
limitations G i

]
O

Replay-Based Methods for Continual Learning, Gabriele Merlin, MS Thesis, University of Pisa, 2021.

Is Forgetting Solved?

Rehearsal vs Reheasal-free
Not really

e The gap with an offline strategy may be still
very large

e The accuracy improvements with respect to the
memory size is often logarithmic

o Huge buffer sizes (approximating a cumulative
strateqy) may be very inefficient

=l
R
>
@]
el
—
3
v}
¥
<

(for imagenet 50 imgs per —— CWR* (rehe. 1500)
class means about 7 GB memory) = AR1* (rehe. 1500)
— = CWR*
Additional forward and backward passes " AR
over the same examples ==+ Cumulative

150 200 250 300 350
Encountered Batches

]
O

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019.

https://arxiv.org/abs/1912.01100

' Replay Strategies

.'

]

Random Replay O

Algorithm 1 Pseudocode explaining how the external memory
RM is populated across the training batches. Note that the amount
h of patterns to add progressively decreases to maintain a nearly
balanced contribution from the different training batches, but no
constraints are enforced to achieve a class-balancing.

A basic approach

e Sample randomly from the
current experience data

e Fill your fixed Random Memory : RM =92 _
(RM) : RMg;,. = number of patterns to be stored in RM
: for each training batch B;:
2 train the model on shuffled B; U RM
° to 3 RJ\Jsize
maintain an approximate equal : =" 5

number of examples for : Rgqq = random sampling h patterns from B;
experience : %) g ==1

Rreplace = i
b random sample A patterns from RM otherwise

RM = (RJ\[- Rreplace) U Radd

]
O

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019.

https://arxiv.org/abs/1912.01100

Many Implementation Options s

...and many implications

e Fixed or "adaptive” external memory?
o Sample selection: random or representative examples only?

e Mini-batch sample selection: what examples to choose from M and to use in the current mini-batch?
What augmentations to use?

o Separate buffers per class / tasks / notable distributions?
o« Sample based on time: different timescales? Uniform sampling in time?
e Sample replacement: which examples to throw away when the memory is full?

e No clear answer to all these questions: a coherent empirical evaluation still missing

It really depends on the scenario / problem you are solving -> more engineering than science

]
O

Memory Efficient Experience Replay for Streaming Learning, Hayes et al. 2019

https://arxiv.org/abs/1809.05922

GDUMB: Another Control Baseline s

Greedy Sampler and Dumb Learner

o] Greedy
- Sampler

discussions in the CL community

\ [HM] Dt §
e Note that there’s no knowledge transfer in I|||||I & []:H]ﬂmﬂ] Train

e Interesting paper that sparked strong /

this strategy (quite dumb indeed!)

Selection Learning
o Despite its simplicity, It was shown to work " ol Smples Held-out set
better than some existing and more complex VA
strategies,
: . Inference
in our field
e If your strategy cannot beat GDumb there’s b Prediction (p)
something wrong about your strateqgy or your ; o ma ©
evaluation setting EII]"'{ "@ co ity
utpul
H

GDumb: A Simple Approach that Questions Our Progress in Continual Learning. Prabhu et al. ECCV, 2020.

https://arxiv.org/abs/1809.05922

Maximally Interfered Retrieval (MIR) -

Mini-batch Sample Selection

Stream of Non-iid Samples

Cat v Dog Lion vs Zebra Dog vs. Horse
o Select the examples > rr rr‘ii/(
that are more
negatively impacted Wolf vs Car Orange v Apple

by the estimated
weights update

e May be quite slow in
practice w.r.t. the T _ F Ty
actual accuracy gain = ¢ - i Update Interfered
over random selection .

Maximally Interfered

Online Continual Learning with Maximally Interfered Retrieval. Aljundi et al. 2019.

https://arxiv.org/abs/1908.04742

Latent Replay O

Output Layer (classes)

Key Ideas Class Eg-
specific g g
discriminative e g
e Replay in the input space is inefficient and (tfe?twest g £
- - - - raining a ” 5]
biologically implausible full pace) } External Storage 5 £
(replay patterns) 'V
)) . . Latent ‘-..‘ Concat (at |
e Why not replaying in the latent activations replay ‘ 4 | minkbetoh evel)
layer)
space? ! A
Low-level g %
generic g8 o
® Good) features 3 g
are possible (slow = 3
training) e o

<

Input Layer (images)

]
O

Latent Replay for Real-Time Continual Learning. Pellegrini et al. IROS, 2019.

https://arxiv.org/abs/1912.01100

Generative Replay]

Key Ideas [

e Instead of a replay memory ?

e In theory this would be even better than replay: allowing for generating examples that were never
seen before (a form of dreaming or imagination)

o Still difficult to scale on high-dimensional data and find good accuracy-efficiency trade-offs

Current Task Current Task

Scholar,
il New Scholar New Scholar

Scholar,

v Current Generator Current Generator

Scholars
Replay

4
Scholary Generator,

0ld Scholar 0ld Scholar
(a) Sequential Training (b) Training Generator (c¢) Training Solver

Continual Learning with Deep Generative Replay, Shi et al, 2017.

https://arxiv.org/abs/1705.08690

Replay: Summary and Next Steps O

e A definitive study of replay in deep continual learning is still missing
e Replay has been shown to be an effective strategy in CL if performance is the main objective

e Replay is unlikely to be represent the main computational principle for CL in biological learning
systems (not a good efficiency-effectiveness trade-off)

e Many improvements and implementation options have been explored with different degrees of
success

e Generative / latent replay constitute an interesting future direction but quite challenge at the moment
due to the limited generative models capabilities

Avalanche

. Strategies and

Plugins

Training: Design -

Avalanche provides popular strategies already implemented and ready-to-use and easy mechanisms to
define custom strategies.

e Many strategies are already available

e Easy modification of the training loop to add logging and custom behavior (mostly trough
Polymorphism)

]
O

V. Lomonaco et al. Avalanche: an End-to-End Library for Continual Learning. CLVision Workshop at CVPR 2021.

https://arxiv.org/abs/2104.00405

How to: Strategy Initialization

strategy = Replay(model, optimizer,
criterion, mem_size)
for train_exp in scenario.train_stream:
strategy.train(train_exp)
strategy.eval(scenario.test_stream)

How to: Training & Evaluation

from avalanche.benchmarks.classic import SplitMNIST
scenario = SplitMNIST(n_experiences=5, seed=1)

print('Starting experiment...')

results = []

for experience in scenario.train_stream:
print("Start of experience: ", experience.current_experience)
print("Current Classes: ", experience.classes_1in_this_experience)

train_res = cl_strategy.train(experience)
print('Training completed')

print('Computing accuracy on the whole test set')
results.append(cl_strategy.eval(scenario.test_stream))

]
O

V. Lomonaco et al. Avalanche: an End-to-End Library for Continual Learning. CLVision Workshop at CVPR 2021.

https://arxiv.org/abs/2104.00405

Training: Design

e Strategy: defines a CL strategy with two simple methods:
o train and eval.

e Plugin: a simple interface to add custom behavior to the training and eval loops.

]
O

V. Lomonaco et al. Avalanche: an End-to-End Library for Continual Learning. CLVision Workshop at CVPR 2021.

https://arxiv.org/abs/2104.00405

How to: Add Plugins

replay = ReplayPlugin(mem_size)
ewc = EWCPlugin(ewc_lambda)
strategy = BaseStrategy(
model, optimizer,
criterion, mem_s1ize,
plugins=[replay, ewc])

|
V. Lomonaco et al. Avalanche: an End-to-End Library for Continual Learning. CLVision Workshop at CVPR 2021.

https://arxiv.org/abs/2104.00405

Training: Custom Strategies

How to write custom strategy
e plugin: the easiest way to customize training and define new strategies.
o strategy: override the loop methods directly.

Why should | use Avalanche to implement my own strategies?
e automatic logging & metrics evaluation.

e you write less code, and you can easily share it with the community.

|
V. Lomonaco et al. Avalanche: an End-to-End Library for Continual Learning. CLVision Workshop at CVPR 2021.

https://arxiv.org/abs/2104.00405

]

BaseStrategy: Under the hood

e The base class from which to inherit

and to specialize

e Implemented as a series of callbacks as
a skeleton to the plugin system: this
means you can write plugins “by

difference” and compose plugins

train
before_training
before_training_exp
adapt_train_dataset
make_train_dataloader
before_training_epoch
before_training_1iteration
before_forward
after_forward
before_backward
after_backward
after_training_iteration
before_update
after_update
after_training_epoch
after_training_exp
after_training

V. Lomonaco et al. Avalanche: an End-to-End Library for Continual Learning. CLVision Workshop at CVPR 2021.

https://arxiv.org/abs/2104.00405

]

Custom Plugin

from avalanche.training.plugins import StrategyPlugin

class ReplayPlugin(StrategyPlugin):
""" Experience replay plugin. """

def __init__(self, mem_size=200):
super().__init__()
self.mem_size = mem_size
self.ext_mem = {}

self.rm_add = None

def adapt_train_dataset(self, strategy, **kwargs):
Expands the current training set with datapoints from
the external memory before training.

def after_training_exp(self, strategy, **kwargs):

After training we update the external memory with the patterns of
the current training batch/task.

V. Lomonaco et al. Avalanche: an End-to-End Library for Continual Learning. CLVision Workshop at CVPR 2021.

https://arxiv.org/abs/2104.00405

Custom Strategy

class Cumulative(BaseStrategy):
def __1init__(*args, **kwargs):
super().__init__(*args, **kwargs)
self.dataset = {}

def adapt_train_dataset(self, **kwargs):
""" Concatenate data from previous experiences. """
super().adapt_train_dataset(**kwargs)
curr_task_1id = self.experience.task_label
curr_data = self.experience.dataset
if curr_task_id in self.dataset:
cat_data = ConcatDataset([self.dataset[curr_task_1id],
curr_datal)
self.dataset[curr_task_id] = cat_data
else:
self.dataset[curr_task_id] = curr_data
self.adapted_dataset = self.dataset

|
V. Lomonaco et al. Avalanche: an End-to-End Library for Continual Learning. CLVision Workshop at CVPR 2021.

https://arxiv.org/abs/2104.00405

Training: What's Next? -

e More Strategies & Plugins! (and make sure they can reproduce published results)

e Support for Unsupervised / Reinforcement Continual Learning (check the Avalanche ecosystem!)

]
O

V. Lomonaco et al. Avalanche: an End-to-End Library for Continual Learning. CLVision Workshop at CVPR 2021.

https://arxiv.org/abs/2104.00405

Training in Avalanche

Avalanche GitHub API Doc Paper ContinualAl Q Search,
Loggers

Training

L Copy link
Introduction

Models & The Training Module

Welcome to the "Training" tutorial of the "From Zero to Hero" series. In this part we will present the
Benchmarks functionalities offered by the training module. [A How to Use Strategies & Plugins

Strategy Instantiation

Training First, let's install Avalanche. You can skip this step if you have installed it already.

Training & Evaluation
Evaluation
vajuatio 1pip i 11 git+ht j m/ContinualAI/av € Adding Plugins

Loggers ¥ A Look Inside Avalanche Strategies

Training and Evaluation Loops
Putting All Together

Strategy State
Extending Avalanche How to Write a Plugin

(5 The Training Module Howo Wik Gustom Sraay

@ Run it on Google Colab

Contribute to Avalanche

The training module in Avalanche is designed with modularity in mind. Its main goals are to:

1. provide a set of popular continual learning baselines that can be easily used to run experimental
AvalancheDataset comparisons;

2. provide simple abstractions to create and run your own strategy as efficiently and easily as
possible starting from a couple of basic building blocks we already prepared for you.

Dataloaders, Buffers, and Replay

- At the moment, the training module includes two main components:

Avalanche API * Strategies: these are popular baselines already implemented for you which you can use for

comparisons or as base classes to define a custom strategy.

]
O

https://avalanche.continualai.org/from-zero-to-hero-tutorial/04_training

https://avalanche.continualai.org/from-zero-to-hero-tutorial/04_training

Replay In
Avalanche

Replay in Avalanche

Avalanche

Introduction
Models

Benchmarks
Training

Evaluation

Loggers

Putting All Together
Extending Avalanche

Contribute to Avalanche

Avalanche API

Guidelines

]
O

GitHub API Doc Paper ContinualAl

Dataloaders, Buffers, and Replay

Avalanche provides several components that help you to balance data loading and implement rehearsal
strategies.

Dataloaders are used to provide balancing between groups (e.g. tasks/classes/experiences). This is
especially useful when you have unbalanced data.

Buffers are used to store data from the previous experiences. They are dynamic datasets with a fixed
maximum size, and they can be updated with new data continuously.

Finally, Replay strategies implement rehearsal by using Avalanche's plugin system. Most rehearsal
strategies use a custom dataloader to balance the buffer with the current experience and a buffer that
is updated for each experience.

Dataloader

Avalanche dataloaders are simple iterators, located under

a ar chmarks.ut ata_lo - . Their interface is equivalent to pytorch's
dataloaders. For example, GroupBalanc ataloader takes a sequence of datasets and iterates
over them by providing balanced mini-batches, where the number of samples is split equally among
groups. Internally, it instantiate a DatalLoader for each separate group. More specialized dataloaders
exist such as TaskBalancedD:

All the dataloaders accept keyword arguments (*
for each group.

aloader

https://avalanche.continualai.org/how-tos/dataloading_buffers_replay

Q Search

Export as PDF

Copy link

Dataloaders
Memory Buffers
Replay Plugi

https://avalanche.continualai.org/how-tos/dataloading_buffers_replay

Next:
Methodologies [Part 2]

i

Do you have any questions?

vincenzo.lomonaco@unipi.it
vincenzolomonaco.com
University of Pisa]

THANKS
w g

CREDITS: This presentation template was created by Slidesgo,
including icons by Flaticon, and infographics & images by Freepik

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://www.vincenzolomonaco.com/

