Continual Learning: On Machines that can Learn Continually

Official Open-Access Course @ University of Pisa, ContinualAI, AIDA

Lecture 3: Scenarios & Benchmarks

Vincenzo Lomonaco

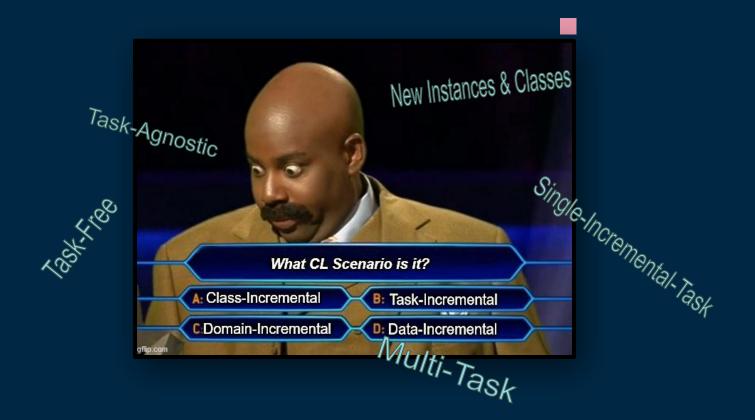
University of Pisa & ContinualAl *vincenzo.lomonaco@unipi.it*

TABLE OF CONTENTS

Continual
Learning
Scenarios

Commonly Used Benchmarks

Avalanche Benchmarks



Dataset Shift in Machine Learning

Objectives:

• We want to learn f: X -> Y

Types of Shift:

- Shift in the independent variables (Covariate Shift): P(X)
- Shift in the target variable (Prior probability Shift): P(Y)
- Shift in the relationship between the independent and the target variable (Concept Shift): P(Y|X)

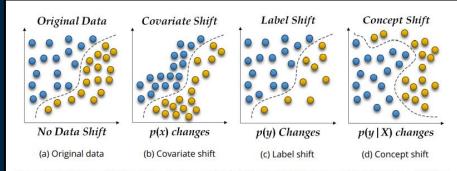
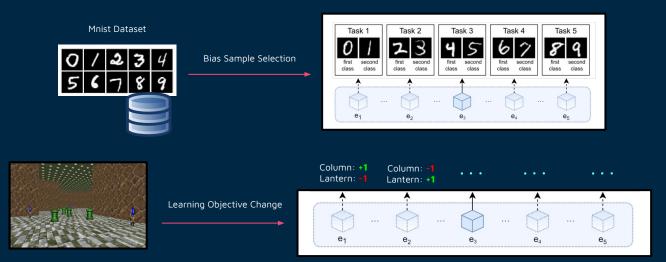


Figure 1: Dataset shift illustration (Similar to Fig. 1 in [4, 5].) Note that the dotted line is the decision boundary between the two classes; i.e., the blue and yellow data points. Here, x represents the input data and y represents the output we aim to predict.

Real vs Virtual Shift



no worries: we can just look for **feedback (labels? rewards? heuristics?..)** and approximate the (eventually shifting) learning objective the best way we can.

Non-stationary Assumptions:

- Real Shift: the learning objective is changing (more studied in online learning and AutoML)
- Virtual Shift: sample selection bias (Continual Learning today main focus)

<u>Dataset Shift in Machine Learning</u>, Joaquin Quiñonero-Candela et al, 2008. <u>Incremental learning algorithms and applications</u>. Gepperth et al. ESANN, 2016.

Apparently Overwhelming Scenario Proposals

Different Objectives:

- Learn a sequence of well-defined tasks in a sequence
- Learn from non-i.i.d data, **small batches**
- Learn one pattern at a time
-

Different Assumptions:

- Different **Train and Testing Settings**
- Amount of Supervision (labels?, task labels?, rewards?)
- **Experiences content** (new classes?, new instances?, ...)
- ..

Common Assumptions

- Shift is only virtual (forgetting is not needed, accumulation of knowledge is enough).
- **No conflicting evidence** (we are modeling **mathematical functions**, i.e. to one x there's only one valid y).
- Unbounded time between two experiences (you can train as much as you want)
- Data in each experience can be processed together (you can shuffle them, process them multiple times, etc.)

Key-Settings and Scenarios

- 1. Availability of Task/Distribution Labels: during training and/or testing
- 2. Task/Shift Boundaries: during training and/or testing
- 3. **Experience Content**: examples of [same|new] classes
- 4. **Classification Problem**: [Unique|Partitioned]

Name	Task Labels	Boundaries	Classes	Problem
Class-Incremental	no	yes	new	unique
Task-Incremental	yes	yes	new	partitioned
Domain-Incremental	no	yes	same	unique
Task-Free	по	no	any	unique
Task-Agnostic	по	no	any	partitioned

...any combination is possible: check for these assumptions!

A Possible Categorization

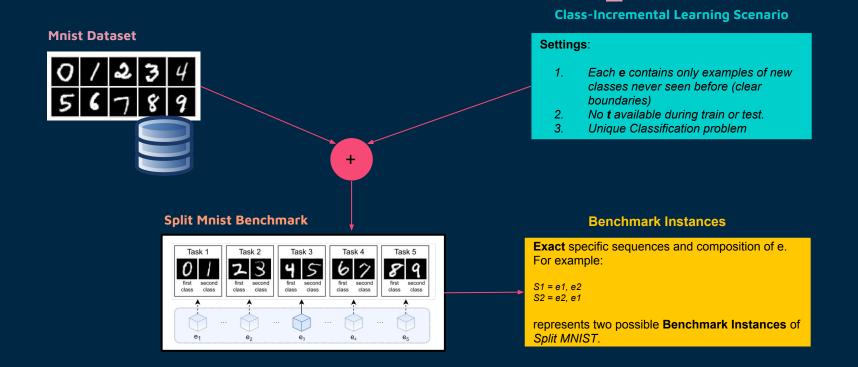
Task Labels

Experience content type

	New Instances (NI)	New Classes (NC)	New Instances and Classes (NIC)
Multi-Task	-	Task Incremental	-
Single-Incremental-Task	Domain-Incremental	Class-Incremental	Data-Incremental
Multiple-Incremental-Task	?	?	?

- Single-Incremental-Task (SIT): $t_1 = t_2 = \cdots = t_N$.
- Multi-Task (MT): $\forall i, j \in [1, ..., n]^2, i \neq j \implies t_i \neq t_j$.
- Multi-Incremental-Task (MIT): $\exists i, j, k: t_i = t_j \text{ and } t_j \neq t_k$.
- Defining the notion of a scenario based on what the agent sees <x, y, ..., t>.
- Unexplored areas (see "?").
- **Still not comprehensive enough**: what if you have multiple tasks for one experience? t should be rather a tensor |t| == |y|

Dataset vs Scenario vs Benchmark



Common CL benchmarks

Table 3: Benchmarks and environments for continual learning. For each resource, paper use cases in the NI, NC and NIC scenarios are reported.

Benchmark	NI NC NIC		NIC	Use Cases	
Split MNIST/Fashion MNIST		√		[83, 81, 57, 130]	
Rotation MNIST	V			[92, 83, 127]	
Permutation MNIST	1			[53, 73, 43, 150, 176, 83, 57, 127]	
iCIFAR10/100		1		[125, 97, 70]	
SVHN		1		[71, 145, 130]	
CUB200	V			[80]	
CORe50	1	1	✓	[91, 115, 97]	
iCubWorld28	V			[116, 90]	
iCubWorld-Transformation		1		[117, 16]	
LSUN		V		[171]	
ImageNet		1		[125, 95]	
Omniglot		1		[77, 144]	
Pascal VOC		√		[104, 151]	
Atari	V			[136, 73, 144]	
RNN CL benchmark			√	[153]	
CRLMaze (based on VizDoom)	V			[89]	
DeepMind Lab	V			[99]	

Past Focus

Multi-Task (Often with Task Supervised Signals)

- I.I.D by Parts
- Few Big Tasks
- Unrealistic / Toy Datasets
- Mostly Supervised
- Accuracy

Current Focus

- Class-Incremental Learning
- I.I.D by parts
- Dozens of experiences
- Mostly unrealistic / toy datasets
- Mostly supervised
- Accuracy

Is Class-Incremental Enough for Continual Learning?

Why can't we revisit previously seen classes?

- Real-world environments may naturally include repetition
- More repetition

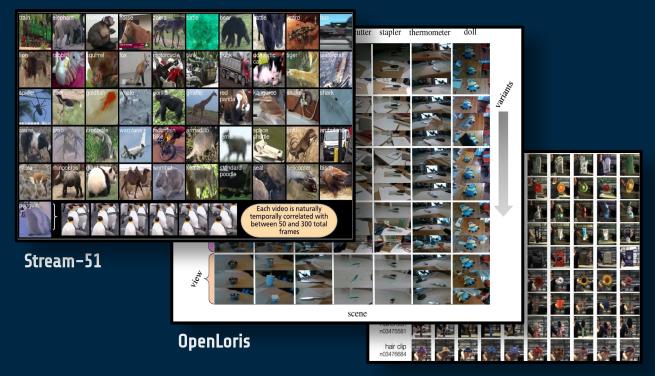
 less forgetting (replay / rehearsal)
 - CL ≠ no forgetting (many other objectives)
- Repetition may be used as source of information
 - what is important and what not based on frequencies of occurrences
- Usually repetition allows for longer streams (more experiences)

TL;DR: Class-Incremental with repetition is interesting

What's Next?

- Single-Incremental-Task
- **High-Dimensional Data Streams** (highly non-i.i.d.)
- Natural / Realistic Datasets
- Mostly **Unsupervised**
- Scalability and Efficiency

Natural Video Benchmarks: the Path Forward?



iCub-Transformation

Not only Data Streams but Sequences!

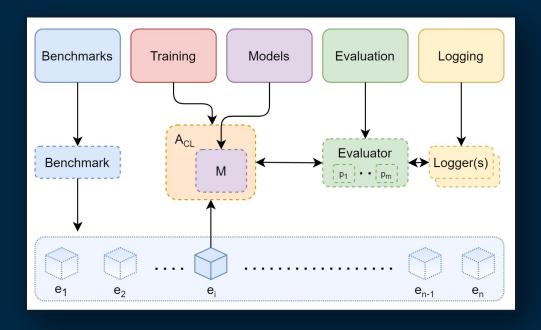
Continual Learning needs the presence of multiple (temporal coherent and unconstrained) views of the same objects taken in different sessions.

CORe50: a Video Benchmark for CL and Object Recognition/Detection/Segmentation

CORe50: a Video Benchmark for CL and Object Recognition/Detection/Segmentation

Benchmarks Module

- Stand-alone, independent from other modules
- Many out-of-the-box tools
- Maximum flexibility
- Exceptional time saver



Benchmarks Module

- The benchmarks module offers many tools!
- Data loading procedures
- Generation of data streams
 - Streams of Experiences
- A lot of out-of-the-box "classic" benchmarks
 - o SplitMNIST, CIFAR, ImageNet, CUB-200, Stream-51, CORe50, ...
- Creation of custom benchmarks
 - o Maximum compatibility with TorchVision datasets

"Classic" Benchmarks

```
benchmark_instance = SplitMNIST(
    n_experiences=5,
    seed=1)
```

Streams and Experiences

A **benchmark instance** may be composed of many **streams**

- Always available: "train" and "test" streams
- Support for custom streams!
 - o for instance: validation (A-GEM), out-of-distribution (Steam-51), ...

Stream of Experiences, each carrying

- A PyTorch dataset
- Task labels
- Any benchmark-specific data

Benchmark Instance: Basic Loop

```
train_stream = benchmark_instance.train_stream
test_stream = benchmark_instance.test_stream
for idx, experience in enumerate(train_stream):
   dataset = experience.dataset
   print('Train dataset contains',
        len(dataset), 'patterns')
   for x, y, t in dataset:
   test_experience = test_stream[idx]
   cumulative test = test stream[:idx+1]
```

Custom Benchmarks

Higher-level **Benchmark Generators**: ready to use utilities

- "New Classes" (for Class-/Task-Incremental settings)
- "New Instances" (for Domain-Incremental settings)

Lower-level Generators: from ...

- ... Tensors
- ... list of files
- ... Caffe-style filelists
- ... custom PyTorch datasets

Higher Level API: SplitMNIST

```
# Nearly all datasets from torchvision are supported

mnist_train = MNIST('./mnist', train=True)
mnist_test = MNIST('./mnist', train=False)

benchmark_instance = nc_benchmark(
    train_dataset=mnist_train,
    test_dataset=mnist_test,
    n_experiences=n_experiences,
    task_labels=True/False)
```

Benchmarks: Maximum Flexibility

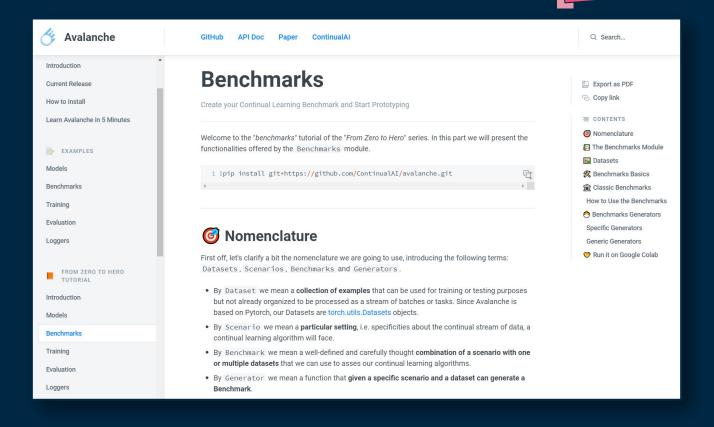
- Mechanisms, internal aspects, name of components are independent w.r.t. the presence of task labels
 - No forced nomenclature
- Choices regarding task labels are left to the benchmark creator
- Task labels can be defined at pattern granularity
- Easy to create complex setups in a simple way

Benchmarks: Next Steps

- Integration of new classic benchmarks (contributions are welcome!)
- Not only classification: Regression, segmentation
- Not only Vision Datasets
- Object Detection (on their way)
- Even more tools for defining custom benchmarks

Avalanche Benchmarks

Demo Session!



vincenzo.lomonaco@unipi.it vincenzolomonaco.com University of Pisa

THANKS

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik